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Static Analysis of Arbitrarily Shaped
Conducting and Dielectric Structures

Sadasiva M. Rao and Tapan K. Sarkar

Abstract—In this paper, a simple and efficient numerical procedure
is presented to compute the charge distribution and capacitance of
conducting bodies in the presence of dielectric structures of arbitrary
shape and finite size. The method presented is robust and provides
accurate results for both low as well as high dielectric-constant materials
as supported by numerical examples.

Index Terms—Capacitance, dielectric bodies, electrostatic analysis, mo-
ment methods.

I. INTRODUCTION

In [1], Rao et al. described the evaluation of static charge distri-
bution and capacitance matrices for conductors of finite size in the
presence of dielectric media. Recently, this formulation was also in-
corporated into a fast multipole method to generate a computationally
fast algorithm [2], [3]. Although the work presented in [1] and [2]
is general, it is computationally expensive. In [1], the total charge is
computed everywhere by solving a set of integral equations, the free
charge on conductors is then obtained by solving yet another integral
equation. Thus, the free-charge extraction is a two-step procedure and,
computationally, this implies storing and inverting large matrices.
Further, the method presented in [1] may be inaccurate, as shown in
[3], for the case of high-dielectric materials.

In this paper, we present a simple and efficient procedure to
obtain the free charge on the conductors in the presence of dielectric
materials which may have low as well as large�r. The main
advantage of this technique is the elimination of the expensive two-
step procedure and calculating the free charge in a straightforward
manner.

II. I NTEGRAL-EQUATION FORMULATION

Consider a system of finite length, and finite- or zero-thickness
conductors situated in the presence of dielectric bodies, as shown
in Fig. 1. Let Nc and Nd represent the total number of disjoint
conductors and dielectric bodies, respectively, which are present in
the system configuration. The whole system is immersed in free space
and could be placed on a ground plane of either finite or infinite size.
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Fig. 1. Conducting and dielectric structures in the homogeneous medium.
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Fig. 2. Numerical modeling procedure.

In this formulation, the central idea is that we treat each conductor
and each dielectric body as if it is immersed in free space. Thus, we
consider a combination of the conductor–dielectric interface as two
bodies separated by zero distance. In this way, we treat all dielectric
bodies as closed surfaces. If the conducting and dielectric bodies are
separated by a finite distance, as shown in Fig. 2(a), the treatment is
obvious. However, if the conductor and dielectric bodies are joined
together, as shown in Fig. 2(b), we treat them as two bodies with
a layer of zero-thickness free space separating them, as shown in
Fig. 2(c).

In applying the equivalent charge formulation, we first replace
each conducting and dielectric surface by surface charges�c and�d,
respectively. Using the mathematical procedures described in [1], we
derive a set of integral equations, given by

N +N

i=1

1

4��0 S

�(rrr0)

jrrr � rrr0j
ds

0 = Vj(rrr);

rrr 2 Sj ; j = 1; 2; � � � ; Nc (1)

and

2�(1+�rj)�(rrr)+(1��rj)

N +N

i=1 S

�(rrr0)(rrr�rrr0) � aaanj
jrrr�rrr0j3

ds
0 = 0;

rrr 2 Sj ; j = Nc + 1; Nc + 2; � � � ; Nc +Nd (2)

whereVj is the potential on thejth conductor,�rj andaaanj are the
dielectric constant and unit outward normal of thejth dielectric body,
and� is the unknown charge density equal to�c or �d. Note thataaanj
may be uniquely defined since the dielectric body is a closed body.
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Thus, it is quite clear that by solving (1) and (2), we obtain the free
charge on the conductor without any further processing. Also, in (1)
and (2),rrr and rrr0 represent the position vectors to observation and
source points with respect to a global coordinate origin, respectively.

III. N UMERICAL SOLUTION

In order to determine� numerically, the surface of each conducting
and dielectric body is discretized into a set of triangular patches and
the charge density is assumed to be constant over a given patch. Thus,
dividing the ith surface intoNi patches, we have

N =

N

i

Ni +

N

i

Ni = Na +Nb (3)

whereN , Na, andNb represent the total number of triangles in the
geometrical model, number of patches on the conductors, and number
of patches on the dielectric bodies, respectively.

For the method-of-moments solution [4], we select the basis as
well as the testing functions as

fp(rrr) =
1:0; rrr 2 Tp
0:0; otherwise

(4)

whereTp is thepth triangular patch in the grid scheme.
First, we consider the testing procedure. Defining the inner product

as

hf; gi =
s

fg ds (5)

we have

fp;

N +N

i=1

1

4��0 S

�(rrr0)

jrrr � rrr0j
ds

0 = hfp; Vj(rrr)i (6)

for p = 1; 2; � � � ; Na, and

hfp; 2�(1 + �rj)�(rrr)i

+ fp; (1� �rj)

N +N

i=1 S

�(rrr0)(rrr � rrr0) � aaanj
jrrr � rrr0j3

ds
0 = 0

(7)

for p = Na + 1; � � � ; N .
Using (4) as expansion functions, we then approximate the charge

density � as

�(rrr) =

N

q=1

�qfq (8)

where�q are the unknown coefficients to be determined.
Substituting (8) in (6) and (7), we obtain a matrix equation given by

[ZZZ][QQQ] = [VVV ] (9)

where the matrix elementZpq is given by

zpq =

1

4��0 T T

ds0 ds

jrrr � rrr0j
; for p = 1; 2; � � � ; Na;

q = 1; 2; � � � ; N

2�(1 + �rp)Ap; for p = q; p; q > Na

(1� �rp)

T T

(rrr � rrr
0) � aaanp

jrrr � rrr
0j3

ds0 ds; for p 6= q; p > Na;

q = 1; 2; � � � ; N:

(10)

Also, the matrix elements for the excitation vector are given byVpAp

for p < Na and zero, otherwise.

Fig. 3. Two conducting cylinders of rectangular cross section (3.0 m�
1.0 m) mounted over a dielectric bed situated on a ground plane. The length
of the structure iny-dimension is 10 m.

TABLE I
CAPACITANCE MATRIX FOR THE TWO-CONDUCTOR

SYSTEM (CAPACITANCE IN NANO-FARADS)

In (10), �rp, aaanp, andAp represent the dielectric constant, outward
unit normal vector, and area of thepth patch, respectively. The
integrations in (10) are performed using analytical and numerical
techniques [5].

A close look at (10) indicates that there exists a singularity for
rrr = rrr0 for the patchesTp, Tq, andp 6= q. This occurs whenever there
is physical contact between two dielectrics or between a dielectric-
conducting structures. Evaluating the singular integral using standard
mathematics, we get

zpq = �2��(1� �rp)Ap (11)

where

� =

2�; if rrr is interior toTp
�; if rrr is on the contour ofTp
�i; if rrr is on theith vertex ofTp

(12)

and�i is the interior angle of theith vertex of the triangleTp.
The superior nature of this method over the previous methods is

evident from the simplified mathematical expressions and efficient
numerical evaluation. The direct computation of the free-charge
density is a major advantage of this approach. This procedure
effectively eliminates the storage of two largeN �N matrices.

IV. NUMERICAL RESULTS

In this section, for the sake of conciseness, we present only two
numerical examples. However, it may be noted that the method was
tested against several published results and found to be accurate in
each case.

For the first example, as shown in Fig. 3, each conducting cylinder
and dielectric bed was approximated by 172 and 392 triangular
patches, respectively, covering all faces. The total number of un-
knowns in the system is 736. In Table I, we present the capacitance
obtained for various permittivity ratios. It may be noted that the
capacitance matrix remains symmetric for all cases, thus illustrating
the robustness of this formulation.

In the second example, referring to Fig. 4, we have two conducting
strips sandwiched between two dielectric beds. Further, two more
conductors are located on the second dielectric bed. For this case, the
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Fig. 4. Two conducting strips (3.0-m width) and two conducting cylinders
of rectangular cross section (3.0 m� 1.0 m) mounted over two dielectric
beds. The whole structure is situated on a ground plane. The length of the
structure iny-dimension is 10 m.

TABLE II
CAPACITANCE MATRIX FOR THE FOUR-CONDUCTOR

SYSTEM (CAPACITANCE IN NANO-FARADS)

strips are modeled with 60 triangular patches each. The conducting
cylinders and dielectric beds are modeled in the same way as in
the previous example. The total number of unknowns for this case is
1248. In Table II, we present the capacitance matrix for two dielectric
ratios, which again, remains symmetric.

V. CONCLUSIONS

In this paper, we present a superior method to calculate the charge
distribution and capacitance for a system of finite-sized conductors
in the presence of arbitrarily shaped dielectric bodies of low, as well
as high, dielectric materials.
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Analysis of a Slot-Coupled T-Junction Between
Circular-to-Rectangular Waveguide

S. B. Sharma, S. B. Chakrabarty, and B. N. Das

Abstract—This paper presents a rigorous analysis of a slot-coupled
T-junction between a primary circular cylindrical waveguide and rect-
angular waveguide, forming the coupled T-arm. The analysis is based
on moment-method formulation using full-wave basis functions and
Galerkin’s technique for testing. Expression for the coupling and reflec-
tion coefficients are found, taking into account the effect of finite wall
thickness of the circular waveguide in which the coupling slot is milled. A
comparison between the theoretical and experimental results on coupling
and return loss are presented.

I. INTRODUCTION

In view of their wide application in commercial systems as well
as laboratory measurements [1]–[5], investigation into different types
of aperture-coupled waveguide junctions has attracted the attention
of researchers for a long time. Rigorous analysis on the slot-coupled
junction between similar and dissimilar waveguides with collinear
[6], [7] and orthogonal axes [8] have been carried out. Formulation
has been presented for a T-junction [9] and also cascaded sections of
junctions [10], in which the primary guide is a rectangular waveguide
and the T-arm is a circular waveguide. It is also of importance to study
the electrical characteristics of a T-junction, in which the primary
waveguide is a circular cylindrical waveguide and the secondary
guide is a rectangular waveguide. This was presumably not attempted
because of the complexity in finding the internal dyadic Green’s
function of the circular cylindrical waveguide.

In this paper, analysis based on moment-method formulation using
full-wave basis function and the Galerkin’s method for testing is
presented for derivation of expression for the electrical characteristics
of a T-junction between a circular waveguide as the primary wave-
guide and T-arm as the rectangular waveguide. The coupling takes
place through an axial slot in the wall of circular waveguide and in
the transverse cross section of the coupled rectangular waveguide.
This analysis takes into account the effect of finite wall thickness by
considering the possible forward and backward traveling waves in the
stub waveguide representing the coupling slot milled in the wall of
the cylindrical waveguide of finite wall thickness [11]. The unknown
field distribution in the slot aperture is found by transforming
the integral equation derived from the boundary conditions for
the tangential components of the magnetic fields into a matrix
equation. The elements of the matrices are found considering the
effect of all possible higher order modes in circular, rectangular,
and stub waveguides. From the elements of the scattering matrix
derived in this formulation, coupling and return loss are found. A
comparison between the theoretical and experimental results are also
presented.
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