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Static Analysis of Arbitrarily Shaped e E -y S
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Fig. 1. Conducting and dielectric structures in the homogeneous medium.

Abstract—In this paper, a simple and efficient numerical procedure
is presented to compute the charge distribution and capacitance of P

conducting bodies in the presence of dielectric structures of arbitrary & PEC
shape and finite size. The method presented is robust and provides
accurate results for both low as well as high dielectric-constant materials
as supported by numerical examples.
Index Terms—C€apacitance, dielectric bodies, electrostatic analysis, mo- @) (b)
ment methods. PEC
[

|I. INTRODUCTION

In [1], Rao et al. described the evaluation of static charge distri-
bution and capacitance matrices for conductors of finite size in the
presence of dielectric media. Recently, this formulation was also ii9- 2. Numerical modeling procedure.
corporated into a fast multipole method to generate a computationally
fast algorithm [2], [3]. Although the work presented in [1] and [2] | this formulation, the central idea is that we treat each conductor
is general, it is computationally expensive. In [1], the total charge ig,q each dielectric body as if it is immersed in free space. Thus, we
computed everywhere by solving a set of integral equations, the figgsider a combination of the conductor—dielectric interface as two
charge on conductors is then obtained by solving yet another integigliies separated by zero distance. In this way, we treat all dielectric
equation. Thus, the free-charge extraction is a two-step procedure iiljies as closed surfaces. If the conducting and dielectric bodies are
computationally, this implies storing and inverting large matricegeparated by a finite distance, as shown in Fig. 2(a), the treatment is
Further, the method presented in [1] may be inaccurate, as shown,yious. However, if the conductor and dielectric bodies are joined
[3], for the case of high-dielectric materials. together, as shown in Fig. 2(b), we treat them as two bodies with

In this paper, we present a simple and efficient procedure 0jayer of zero-thickness free space separating them, as shown in
obtain the free charge on the conductors in the presence of dlelecm&. 2(0).
materials which may have low as well as large. The main |y applying the equivalent charge formulation, we first replace
advantage of this technique is the elimination of the expensive twgsqp conducting and dielectric surface by surface chargesmdo,
step procedure and calculating the free charge in a straightforwggdpectively. Using the mathematical procedures described in [1], we

manner. derive a set of integral equations, given by
Ne+Ng 1 . 0(1'/)
Il. INTEGRAL-EQUATION FORMULATION Z L ds' = Vi(r),
dweo Jg, | —7'] T

Consider a system of finite length, and finite- or zero-thickness=1 ) )
conductors situated in the presence of dielectric bodies, as shown reS;,j=12---, N (1)
in Fig. 1. Let N. and N, represent the total number of disjoint,, 4
conductors and dielectric bodies, respectively, which are present in NN,

. . .. . Nt - ! iy .
the system configuration. The whole system is immersed in free sp@c?H_Erj)J(T)_1_(1_67"]_) Z / a(r')(r—r") - a,; ds' =
=1 Si

4 |r—r'|3

. - s ) 0,
and could be placed on a ground plane of either finite or infinite size. ’

v j=Ne+1, No+2 -+, N.+ N, 2
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Un?\}exityRaA?Jt;Srr\lNli]L tgee&%egasr;\ment of Electrical Engineering, AuburyhereV/; is the potential on thgth conductore,; anda,; are the
T.K. Sérkar is w{th the Department of Electrical Engineering and Computg119|ecFr'C constant and unit Outwarq normal of il dielectric body,
Science, Syracuse University, Syracuse, NY 13244 USA. ando is the unknown charge density equabtoor o4. Note thata,. ;
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Thus, it is quite clear that by solving (1) and (2), we obtain the free Z
charge on the conductor without any further processing. Also, in (1) !
and (2),r andr' represent the position vectors to observation and

source points with respect to a global coordinate origin, respectively.

- 1w = 4§

I1l. N UMERICAL SOLUTION

In order to determine numerically, the surface of each conducting
and dielectric body is discretized into a set of triangular patches and
the charge density is assumed to be constant over a given patch. Thus,
dividing theith surface intoN; patches, we have

N Ng - B.0m -
N=Y Ni+> N=N,+ N, 3)

i : Fig. 3. Two conducting cylinders of rectangular cross section (3.cm
where N, N, and N, represent the total number of triangles in thé-0 m) mounted over a dielectric bed situated on a ground plane. The length
geometrical model, number of patches on the conductors, and numfeie structure iny-dimension is 10 m.
of patches on the dielectric bodies, respectively.

For the method-of-moments solution [4], we select the basis as TABLE |
well as the testing functions as CAPACITANCE MATRIX FOR THE Two-CONDUCTOR
SYSTEM (CAPACITANCE IN NANO-FARADS)
(1) = {[1)8 L nTX;ise 4) & =10 & =10.0 e = 80.0
o 1.2900 -0.0750 | 3.3825 -0.0777 | 24.2206 -0.1399
whereT,, is the pth triangular patch in the grid scheme. -0.0750 1.2900 | -0.0777 3.3825 | -0.1406 24.2208
First, we consider the testing procedure. Defining the inner product
as
f, g) = / fads ) In (10), €-p, anp, and A, represent the dielectric constant, outward
' P unit normal vector, and area of theth patch, respectively. The
we have integrations in (10) are performed using analytical and numerical
Nyt Ny ‘ / techniques [5].
s Z 1 / a(r') ds' ) = (fp, Vi(r)) ©) A close look at (10) indicates that there exists a singularity for
P drey Js, - br g r = ' for the patched,, T,, andp # ¢. This occurs whenever there
; is physical contact between two dielectrics or between a dielectric-
forp =1.2,.--, N, and conducting structures. Evaluating the singular integral using standard
(fpr 20(1 4 €,5)a(r)) mathematics, we get
(e S [ Sy <o = ol w
=1 7S [r —'| where
@) 2m, if r is interior to7),
for p = N, 4+ 1, .-+, N, a=<m, if_ r is_ on the contour of}, (12)
Using (4) as expansion functions, we then approximate the charge ai,  if rison theith vertex ofT,
density s as and«; is the interior angle of théth vertex of the triangld,.
N The superior nature of this method over the previous methods is
a(r) = Zaqfq (8) evident from the simplified mathematical expressions and efficient
q=1 numerical evaluation. The direct computation of the free-charge

density is a major advantage of this approach. This procedure

wheres, are the unknown coefficients to be determined. : - . :
b@,ﬁectlvely eliminates the storage of two largé x N matrices.

Substituting (8) in (6) and (7), we obtain a matrix equation given

[2)[Q) = [V] ©) IV. NUMERICAL RESULTS
where the matrix element,, is given by In this section, for the sake of conciseness, we present only two
1 o ds ds numerical examples. However, it may be noted that the method was
imen /[ /1 ] forp=1,2,---, Nu; tested against several published results and found to be accurate in
pria g=1,2,--. N each case. o _ _

i For the first example, as shown in Fig. 3, each conducting cylinder

o 27 (1 + €rp) Ap, forp=q; p.¢>Na and dielectric bed was approximated by 172 and 392 triangular
" (1—¢€rp) patches, respectively, covering all faces. The total nhumber of un-
=) an ) knovyns in the sy_stem is 73?6_. !n Tab_le I, we present the capacitance

/ / g b ds'ds, forp # ¢; p > Nas obtained for various permittivity ratios. It may be noted that the
i, Ir =1 g=1,2,--- N capacitance matrix remains symmetric for all cases, thus illustrating

(10) the robustness of this formulation.
In the second example, referring to Fig. 4, we have two conducting
Also, the matrix elements for the excitation vector are givevpy,  strips sandwiched between two dielectric beds. Further, two more
for p < N, and zero, otherwise. conductors are located on the second dielectric bed. For this case, the
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> Analysis of a Slot-Coupled T-Junction Between
¥ Circular-to-Rectangular Waveguide
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Abstract—This paper presents a rigorous analysis of a slot-coupled

T-junction between a primary circular cylindrical waveguide and rect-
angular waveguide, forming the coupled T-arm. The analysis is based
on moment-method formulation using full-wave basis functions and

Galerkin’s technique for testing. Expression for the coupling and reflec-

= tion coefficients are found, taking into account the effect of finite wall
X thickness of the circular waveguide in which the coupling slot is milled. A
comparison between the theoretical and experimental results on coupling

f i Qim = and return loss are presented.

Fig. 4. Two conducting strips (3.0-m width) and two conducting cylinders
of rectangular cross section (3.0 s 1.0 m) mounted over two dielectric

beds. The whole structure is situated on a ground plane. The length of the . INTRODUCTION
structure iny-dimension is 10 m. In view of their wide application in commercial systems as well
as laboratory measurements [1]-[5], investigation into different types
TABLE I of aperture-coupled waveguide junctions has attracted the attention
CAPACITANCE MATRIX FOR THE FOUR-CONDUCTOR of researchers for a long time. Rigorous analysis on the slot-coupled
SvsTEM (CAPACITANCE IN NANO-FARADS) junction between similar and dissimilar waveguides with collinear
&1 = 1.0, 6,0 = 1.0 | €1 = 60.0, €0 = 30.0 [6], [7] and orthogonal axes [8] have been carried out. Formulation
0.67 -0.01 -0.29 -0.01)27.33 -0.27 -813 -0.16 has been presented for a T-junction [9] and also cascaded sections of
-0.01 067 -001L -029!| -027 2733 -0.16 -8.13 junctions [10], in which the primary guide is a rectangular waveguide
029 -0.01 0.64 -0.09! -850 -0.13 923 -1.46 and the T-arm is a circular waveguide. It is also of importance to study
0.01 -029 -0.09 0.64] -0.13 -850 -1.46 9.23 the electrical characteristics of a T-junction, in which the primary

waveguide is a circular cylindrical waveguide and the secondary

. ) . guide is a rectangular waveguide. This was presumably not attempted
strips are modeled with 60 triangular patches each. The conductifigt; ,se of the complexity in finding the internal dyadic Green's
cylinders and dielectric beds are modeled in the same way asgifction of the circular cylindrical waveguide.

the previous example. The total number of unknowns for this case i, this paper, analysis based on moment-method formulation using
1248. In Table II, we present the capacitance matrix for two dielectiig.wave basis function and the Galerkin’s method for testing is

ratios, which again, remains symmetric. presented for derivation of expression for the electrical characteristics
of a T-junction between a circular waveguide as the primary wave-
V. CONCLUSIONS guide and T-arm as the rectangular waveguide. The coupling takes

ce through an axial slot in the wall of circular waveguide and in

In this paper, we present a superior method to calculate the chaP% . )
distribution and capacitance for a system of finite-sized conductdf$ ransverse cross section of the coupled rectangular waveguide.

in the presence of arbitrarily shaped dielectric bodies of low, as wdlllS @nalysis takes into account the effect of finite wall thickness by
as high, dielectric materials. considering the possible forward and backward traveling waves in the

stub waveguide representing the coupling slot milled in the wall of
the cylindrical waveguide of finite wall thickness [11]. The unknown
field distribution in the slot aperture is found by transforming
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